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1. The complex numbers 1z  and 2z  are given by 

 

1z  = 2 – i and 2z  = –8 + 9i 

 

(a)  Show 1z  and 2z  on a single Argand diagram. 

(1) 

 

Find, showing your working, 

 

(b)  the value of 1z , 

(2) 

(c)  the value of arg 1z , giving your answer in radians to 2 decimal places, 

(2) 

(d)  
1

2

z

z
 in the form a + bi, where a and b are real. 

(3) 

 

2. (a)  Using the formulae for 


n

r

r
1

, 


n

r

r
1

2  and 


n

r

r
1

3 , show that 

 





n

r

rrr
1

)3)(1(  = 
12

1
n(n + 1)(n + 2)(3n + k), 

  

 where k is a constant to be found. 

(7) 

(b)  Hence evaluate 



40

21

)3)(1(
r

rrr . 

(2) 

 

3.               f(x) = (x
2
 + 4)(x

2
 + 8x + 25) 

 

(a)  Find the four roots of f(x) = 0. 

(5) 

(b)  Find the sum of these four roots. 

(2) 
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4. Given that α is the only real root of the equation 

 

x
3
 – x

2
 – 6 = 0, 

 

(a)  show that 2.2 < α < 2.3 

(2) 

(b)  Taking 2.2 as a first approximation to α, apply the Newton-Raphson procedure once to 

f(x) = x
3
 – x

2
 – 6 to obtain a second approximation to α, giving your answer to 3 decimal 

places. 

(5) 

(c)  Use linear interpolation once on the interval [2.2, 2.3] to find another approximation to α, 

giving your answer to 3 decimal places. 

(3) 

 

5.      R = 








ba

a 2
, where a and b are constants and a > 0. 

 

(a)  Find R
2
 in terms of a and b. 

(3) 

 

Given that R
2
 represents an enlargement with centre (0, 0) and scale factor 15, 

 

(b)  find the value of a and the value of b. 

(5) 

 

 

6. The parabola C has equation y
2
 = 16x. 

 

(a)  Verify that the point P(4t
2
, 8t) is a general point on C. 

(1) 

(b)  Write down the coordinates of the focus S of C. 

(1) 

(c)  Show that the normal to C at P has equation 

 

y + tx = 8t + 4t
3
 . 

(5) 

 

The normal to C at P meets the x-axis at the point N. 

 

(d)  Find the area of triangle PSN in terms of t, giving your answer in its simplest form. 

(4) 
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7.                A = 












41

2a
,  where a is a constant. 

 

(a)  Find the value of a for which the matrix A is singular. 

(2) 

 

B = 












41

23
 

 

(b)  Find B
–1

. 

(3) 

 

The transformation represented by B maps the point P onto the point Q. 

 

Given that Q has coordinates (k – 6, 3k + 12), where k is a constant, 

 

(c) show that P lies on the line with equation y = x + 3. 

(3) 

 

 

 

8. Prove by induction that, for n  ℤ+
 , 

 

(a) f(n) = 5
n
 + 8n + 3 is divisible by 4, 

(7) 

(b)  

n














12

23
 = 













n

n

n

n

21

2

2

12
. 

(7) 
 

 

TOTAL FOR PAPER: 75 MARKS 

END 
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 1 

Question 

Number 
Scheme Marks 

1.       (a)         

       

 

 

 

B1          (1) 

(b) 5)1(2 22

1 z  (or awrt 2.24) M1 A1   (2) 

(c) 
      










2

1
arctan  or  










2

1
arctan  

  46.0arg 1 z  or 5.82   (awrt)    

 

M1 

A1          (2) 

(d) 
         

i2

i2

i2

i98









 

      i25
5

9i18i816



   i.e.  a = -5 and b =2 or  2

5
a  

 

M1 

 

A1 A1ft  (3) 

(8 marks) 

2.       (a)       rrrrrr 34)3)(1( 23  ,   so use    rrr 34 23    

      
















 )1(

2

1
3)12)(1(

6

1
4)1(

4

1 22 nnnnnnn  

       18)12(8)1(3)1(
12

1
 nnnnn  or   3 21

3 22 45 26
12

n n n n     

                                                                        or =  3 21
( 1) 3 19 26

12
n n n n     

        )133)(2)(1(
12

1
26193)1(

12

1 2  nnnnnnnn       (k = 13) 

M1 

 

 

A1  A1 

 

 

 

 

 

 

M1 A1 

 

 

 

M1 A1cao 

(7) 

 

(b)        
40

1

20

1

40

21

  

     70721056210763420)73222120(
12

1
)133424140(

12

1
  

 

M1 

 

 

 

A1 cao   (2) 

(9 marks) 
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Question 

Number 
Scheme Marks 

3.       (a)       i042 kxx  ,       i2x  

        Solving 3-term quadratic 

        
8 64 100

4 3i and - 4 -3i
2

x
  

     

M1, A1 

 

M1 

 

 

A1  A1ft (5) 

(b)      8)i34()i34()i2(i2    

      

M1 A1cso 

 (2) 

(7 marks)  

4.       (a)         192.062.22.2)2.2(f 23   

        877.063.23.2)3.2(f 23      

       Change of sign  Root  need numerical values correct (to 1 s.f.).    

 

M1 

 

A1        (2) 

(b)         xxx 23)(f 2   

        12.10)2.2(f   

      0
1 0

0

f ( ) 0.192
2.2

f ( ) 10.12

x
x x

x


   


  

 2.219     

B1 

B1 

 

M1 A1ft 

 

A1cao    (5) 

(c) 
       

2.2 2.3

'0.192' '0.877 '

  


 
 (or equivalent such as 

0.1

'0.192' '0.877 '

k k


 
 .)  

  

(0.877 0.192) 2.3 0.192 2.2 0.877        

or (0.877 0.192) 0.1 0.192k    , where 2.2 k    

 

M1  

 

 

A1 

 

 so 218.2   (2.21796…)                 (Allow awrt)  A1         (3) 

(10 marks) 

 

5.       (a)         



















22

2
2

2

222

baaba

baaa
R  

 

M1 A1 A1 

(3) 

 

(b)   Puts their 2 2a a  = 15 or their 22a b = 15  

or  their 2 2 2( 2 )(2 ) ( )(2 2 )a a a b a ab a b      = 225 ( or to 15) ,    

        Puts their 2 0a ab   or their 2a + 2b = 0  

        Solve to find either a or b 

        3,3  ba    

 

 

M1,  

 

M1 

 

M1 

A1, A1   (5) 

(8 marks)  
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Question 

Number 
Scheme Marks 

6.       (a)        222 64)8( tty     and   22 6441616 ttx   

Or identifies that a = 4 and uses general coordinates 2( ,2 )at at  

 

B1          (1) 

(b)        (4, 0) B1          (1) 

 

(c)     2

1

2

1

2
d

d
4



 x
x

y
xy  

  Replaces x by 24t  to give gradient                                    [
1

2 2
2 1

2(4 )
2

t
t t



   ] 

  Uses Gradient of normal is 
1

gradient of curve
                          [ t ] 

      32 48)4(8 tttxytxtty                                                     (*) 

 

B1 

 

M1,  

 

M1 

 

M1 A1cso 

(5) 

 

(d) 
        At N,  y = 0, so 248 tx   or 

38 4t t

t


 

        Base 2 2(8 4 ) 4  ( 4 4 )SN t t      

Area of  PSN = )1(16)8)(44(
2

1 22 tttt   or 316 16t t  for  t > 0 

 

 

B1 

 

B1ft 

 

M1 A1   (4) 

(11 marks) 

7.       (a)        Use 
1

4 ( 2 1) 0 ,
2

a a       M1, A1  (2) 

(b)        Determinant: )(10)12()43(      

        









31

24

10

11
B   

M1 

 

M1 A1cso 

(3) 

(c) 
     


































)123(3)6(

)123(2)6(4

10

1
,

123

6

31

24

10

1

kk

kk

k

k
 

       








 3k

k
    Lies on 3 xy     

 

M1, A1ft 

 

A1          (3) 

(8 marks) 
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Question 

Number 
Scheme Marks 

8.       (a)      16385)1(f  , (which is divisible by 4).   (True for n = 1). 

     Using the formula to write down f(k + 1),     3)1(85)1(f 1   kk k  

      3853)1(85)(f)1(f 1   kkkk kk  

                              8)(54385388)5(5  kkk kk  

      )(f)25(4)1(f kk k  , which is divisible by 4 

      True for n = k + 1 if true for n = k. True for n = 1, true for all n. 

B1 

 

M1  A1 

 

M1 

A1 

 

A1ft 

A1cso     (7) 

 

(b)       For n = 1, 

1

12

23

12

23

212

212







































nn

nn
   (True for n = 1.) 

     

1
3 2 2 1 2 3 2 2 3 2 2

2 1 2 1 2 2 1 2 2 2 1

k
k k k k

k k k k


            

       
           

 

                                            
2( 1) 1 2( 1)

2( 1) 1 2( 1)

k k

k k

    
  

   
 

    True for n = k + 1 if true for n = k. True for n = 1, true for all n  

 

B1 

 

 

M1 A1 A1 

 

 

 

M1 A1 

 

A1 cso    (7) 

(14 marks) 

 


